· Shane Trimbur
Python 3.14 Template Strings: A Game-Changer for KQL and Security Professionals
Template strings represent a significant evolution in how we can build secure, maintainable query automation tools. For security professionals working with KQL, SQL, and other query languages, this feature will eliminate many current pain points while opening up new possibilities for sophisticated security tooling.

Python 3.14 introduces a powerful new feature called template strings (t-strings) that will revolutionize how security professionals work with dynamic queries. If you’re tired of wrestling with string formatting while building KQL queries, SQL statements, or other security automation scripts, t-strings are about to make your life significantly easier.
What Are Template Strings?
Template strings look similar to Python’s familiar f-strings, but instead of immediately formatting the string, they create a structured object that you can programmatically process. This separation of template definition from rendering opens up powerful possibilities for security tooling.
# Traditional f-string (immediate formatting)
name = "admin@company.com"
query = f"SigninLogs | where UserPrincipalName == '{name}'"
# New t-string (deferred, programmable formatting)
template = t"SigninLogs | where UserPrincipalName == '{name}'"
# Returns a Template object, not a string
The key difference is that t-strings give you access to both the static text and the interpolated variables as separate, processable components.
Current Pain Points in Security Query Building
Anyone who builds dynamic KQL queries professionally knows these frustrations:
Security Vulnerabilities
# Dangerous - vulnerable to injection
user_input = 'admin" or 1==1 or "'
query = f'SigninLogs | where UserPrincipalName == "{user_input}"'
Code Duplication
# Same logic, different query languages
kql_query = f"SigninLogs | where TimeGenerated > ago({timespan})"
splunk_query = f"index=security earliest=-{timespan}"
elastic_query = f'{{"range": {{"@timestamp": {{"gte": "now-{timespan}"}}}}}}'
Difficult Validation
# Hard to validate parameters before query execution
def build_query(table, timespan, user):
# How do you validate 'table' is safe before string interpolation?
return f"{table} | where TimeGenerated > ago({timespan}) | where User == '{user}'"
How T-Strings Solve These Problems
1. Automatic Query Sanitization
from string.templatelib import Template, Interpolation
def safe_kql(template: Template) -> str:
"""Automatically sanitize KQL queries"""
output = []
for item in template:
if isinstance(item, Interpolation):
# Apply context-aware escaping
if item.name.endswith('_email'):
# Email fields - escape quotes
value = f'"{item.value.replace('"', '""')}"'
elif item.name.endswith('_timespan'):
# Validate timespan format
value = validate_kql_timespan(item.value)
elif item.name.endswith('_table'):
# Validate against allowed tables
if item.value not in ALLOWED_TABLES:
raise SecurityError(f"Unauthorized table: {item.value}")
value = item.value
else:
# Default escaping
value = f'"{str(item.value).replace('"', '""')}"'
output.append(value)
else:
output.append(item)
return "".join(output)
# Usage - injection-safe automatically
user_email = 'malicious"input@evil.com'
time_range = "7d"
table_name = "SigninLogs"
query = safe_kql(t"""
{table_name}
| where TimeGenerated > ago({time_range})
| where UserPrincipalName == {user_email}
| summarize count() by Result
""")
2. Multi-Platform Query Generation
def kql_formatter(template: Template) -> str:
"""Format template as KQL"""
# KQL-specific formatting logic
pass
def splunk_formatter(template: Template) -> str:
"""Format same template as Splunk SPL"""
# SPL-specific formatting logic
pass
def elasticsearch_formatter(template: Template) -> str:
"""Format same template as Elasticsearch query"""
# Elasticsearch JSON formatting logic
pass
# One template, multiple platforms
security_template = t"""
{table_name}
| where TimeGenerated > ago({time_range})
| where UserPrincipalName == {user_email}
| summarize {aggregation} by {group_by}
"""
# Generate platform-specific queries
kql_query = kql_formatter(security_template)
splunk_query = splunk_formatter(security_template)
elastic_query = elasticsearch_formatter(security_template)
3. Query Parameter Validation and Documentation
def validate_and_document_query(template: Template) -> dict:
"""Validate parameters and generate documentation"""
params_info = []
validated_values = {}
for item in template:
if isinstance(item, Interpolation):
param_info = {
'name': item.name,
'value': item.value,
'type': type(item.value).__name__,
'position': item.position if hasattr(item, 'position') else None
}
# Context-aware validation
if item.name == 'table_name':
if item.value not in SECURITY_TABLES:
raise ValueError(f"Invalid security table: {item.value}")
param_info['validated'] = True
elif item.name == 'time_range':
if not is_valid_timespan(item.value):
raise ValueError(f"Invalid timespan format: {item.value}")
param_info['validated'] = True
elif item.name.endswith('_email'):
if not is_valid_email(item.value):
raise ValueError(f"Invalid email format: {item.value}")
param_info['validated'] = True
params_info.append(param_info)
validated_values[item.name] = item.value
return {
'template_hash': hash(str(template)),
'parameters': params_info,
'query': render_secure_kql(template),
'timestamp': datetime.now().isoformat(),
'validation_passed': True
}
Real-World Security Use Cases
Incident Response Automation
# Flexible incident response template
incident_template = t"""
{log_table}
| where TimeGenerated between ({start_time} .. {end_time})
| where {indicator_field} contains "{indicator_value}"
| extend ThreatLevel = case(
{threat_conditions}
)
| project TimeGenerated, {output_fields}
| sort by ThreatLevel desc, TimeGenerated desc
"""
def incident_response_query(incident_type: str, **kwargs) -> str:
"""Generate incident-specific queries"""
if incident_type == "malware":
return malware_formatter(incident_template, **kwargs)
elif incident_type == "phishing":
return phishing_formatter(incident_template, **kwargs)
elif incident_type == "data_exfiltration":
return exfiltration_formatter(incident_template, **kwargs)
else:
return generic_formatter(incident_template, **kwargs)
# Usage
malware_query = incident_response_query(
"malware",
log_table="SecurityEvents",
start_time="2024-06-01",
end_time="2024-06-02",
indicator_field="ProcessName",
indicator_value="suspicious.exe"
)
Compliance Reporting
# Multi-framework compliance template
compliance_template = t"""
AuditLogs
| where TimeGenerated > ago({reporting_period})
| where Category == "{audit_category}"
| where Result == "{result_filter}"
| extend ComplianceStatus = case(
{compliance_logic}
)
| summarize {aggregation_method} by {grouping_fields}
"""
def generate_compliance_report(framework: str, **params) -> dict:
"""Generate compliance reports for different frameworks"""
framework_configs = {
"SOX": {
"audit_category": "Financial",
"compliance_logic": "Result == 'Success', 'Compliant', 'Non-Compliant'",
"aggregation_method": "count(), countif(ComplianceStatus == 'Compliant')"
},
"PCI": {
"audit_category": "Payment",
"compliance_logic": "Result == 'Success' and Location != 'External', 'Compliant', 'Non-Compliant'",
"aggregation_method": "count(), avg(ResponseTime)"
},
"HIPAA": {
"audit_category": "Healthcare",
"compliance_logic": "Result == 'Success' and DataClassification == 'PHI', 'Compliant', 'Non-Compliant'",
"aggregation_method": "count(), countif(DataAccessed == true)"
}
}
config = framework_configs.get(framework, {})
merged_params = {**config, **params}
return {
"framework": framework,
"query": compliance_formatter(compliance_template, **merged_params),
"parameters": merged_params,
"generated_at": datetime.now().isoformat()
}
Threat Hunting Workflows
# Parameterized threat hunting template
hunt_template = t"""
union {data_sources}
| where TimeGenerated > ago({hunt_timeframe})
| where {initial_filter}
| extend Anomaly = case(
{anomaly_detection_logic}
)
| where Anomaly != "Normal"
| project {output_schema}
| join kind=leftouter (
ThreatIntelligence
| where TimeGenerated > ago({ti_freshness})
) on {join_key}
"""
def threat_hunt_query_builder(hunt_type: str, **params) -> str:
"""Build threat hunting queries based on hunt type"""
hunt_configs = {
"lateral_movement": {
"data_sources": "SecurityEvent, Syslog, WindowsEvent",
"initial_filter": "EventID in (4624, 4625) or SyslogFacility == \"auth\"",
"anomaly_detection_logic": "FailureCount > 10, \"High\", \"Normal\"",
"join_key": "SourceIP"
},
"data_exfiltration": {
"data_sources": "NetworkTraffic, FileEvents, CloudAudit",
"initial_filter": "TransferSize > 100MB or FileOperation == \"copy\"",
"anomaly_detection_logic": "TransferSize > avg(TransferSize) * 3, \"High\", \"Normal\"",
"join_key": "DestinationIP"
},
"privilege_escalation": {
"data_sources": "SecurityEvent, AuditLogs, PrivilegedOperations",
"initial_filter": "EventID in (4672, 4673, 4674)",
"anomaly_detection_logic": "PrivilegeCount > 5, \"High\", \"Normal\"",
"join_key": "UserPrincipalName"
}
}
config = hunt_configs.get(hunt_type, {})
return hunt_formatter(hunt_template, **{**config, **params})
Benefits for Security Teams
Reduced Development Time: Write query logic once, deploy across multiple platforms and use cases.
Enhanced Security: Built-in parameter validation and sanitization prevent injection attacks.
Better Maintainability: Separate template definition from rendering logic makes code easier to update and debug.
Improved Collaboration: Security analysts can focus on query logic while developers handle the technical implementation details.
Audit Trail: Automatic documentation of query parameters and validation steps improves compliance reporting.
Getting Started
Template strings will be available in Python 3.14. To start preparing:
- Review your current dynamic query building code - identify repetitive patterns that could benefit from templating
- Plan your parameter validation strategy - think about what validations each query parameter type needs
- Consider multi-platform scenarios - identify queries that could be shared across different security tools
- Design your template library - organize common security query patterns as reusable templates
Template strings represent a significant evolution in how we can build secure, maintainable query automation tools. For security professionals working with KQL, SQL, and other query languages, this feature will eliminate many current pain points while opening up new possibilities for sophisticated security tooling.
Ready to upgrade your security automation? Start planning your migration to Python 3.14 template strings today.